Software

istakes
Iradeoffs

How to make good programming decisions

)

y

Tomasz Lelek
Jon Skeet

e
OISR

.

| | BTYTIY

acknowledgments

Writing a book involves a lot of effort. However, thanks to Manning, it was a pleasure
to work on it.

First and foremost, I want to thank my wife, Malgorzata. You've always supported
me and listened to my ideas and problems. Because I have you, I could focus on the
book.

Next, I'd like to acknowledge my editor at Manning, Doug Rudder. Thank you for
working with me. Your comments and feedback were invaluable. 1 was able to progress
my writing skills to the next level because of your involvement. Thanks as well to all
the other folks at Manning who worked with me on the production and promotion of
the book. It was truly a team effort. Another big thank you to the rest of the staff at
Manning: my production editor, Deirdre Hiam; my copyeditor, Christian Berk: my
reviewing editor, Mihaela Batinic; and my proofreader, Jason Everett.

I'd also like to thank the reviewers who took the time to read my manuscript at var-
ious stages during its development and who provided invaluable feedback—your sug-
gestions helped make this a better book: Alex Saez, Alexander Weiher, Andres Sacco,
Andrew Eleneski. Andy Kirsch, Conor Redmond, Cosimo Atanasi, Dave Corun,
George Thomas, Gilles lachelini, Gregory Varghese, Hugo Cruz, Johannes Verwijnen,
John Guthre, John Henry Galino, Johnny Slos, Maksym Prokhorenko, Marc-Oliver
Scheele, Nelson Gonzilez, Oliver Korten, Paolo Brunast, Rafael Awvila Marunez,
Rajesh Mohanan, Robert Trausmuth, Roberto Casadei, Sau Fai Fong, Shawn Lam,
Spencer Marks, Vasile Boris, Vincent Delcoigne, Vitosh Doynov, Walter Stoneburner,
and Will Price.

Core concepts
Top tips in this book

Top tip

Page number

Sectlon

Always validate your assumptions about the code performance, depending on whether it
is executed in the single or multithreaded context.

We can calculate the cost of coordination within teams using Amdahl’s law.

It's hard to use functional exception handling when mixing it with an object-oriented
approach. It's even more complicated if the object-oriented code does not declare what
exceptions it may throw.

We can leverage the findings from the Pareto principle to find the code that brings the
most value to our consumers and focus on optimizing that part.

Encapsulating the downstream components settings from our clients allows us to evolve
without breaking the compatibility of our APls.

Iterating on date and time reguirements with product owners, using concrete examples
with as many comer cases as you can think of, makes implementing those requirements
much simpler.

Maoving computations to data allows us to design big data processing that otherwise
would be very slow or not even feasible.

It's essential to pick a library with a similar or the exact concurrency model as your appli-
cation. The scalability and performance of your software will benefit.

It is crucial to understand whether or not operations in our system are idempotent. The
more idempotent operations we have, the more resilient the system we can design.

It's often possible to tweak the consistency versus the availability of systems we use. So
it's crucial to understand the consequences of those decisions.

Designing the versioning strategy for a network APl from the start and documenting it
publicly and clearly can give customers confidence and help them make their own ver-
sioning decisions.

Sometimes it's wiser to develop a do-it-yourself (DIY) solution with only needed function-
ality than using a heavy library that provides a required functionality but also a lot of
other functions that we don't need.

6

22
69

105

145

169

205

238

263

201

331

362

1.2

221
3.6.2

5.21

6.5

7.2

811

9.21

10.1.3

11.3.1

12.3.2

13.21

