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Core concepts
Top tips in this book

Top tip
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Always validate your assumptions about the code performance, depending on whether it
is executed in the single or multithreaded context.

We can calculate the cost of coordination within teams using Amdahl’s law.

It's hard to use functional exception handling when mixing it with an object-oriented
approach. It's even more complicated if the object-oriented code does not declare what
exceptions it may throw.

We can leverage the findings from the Pareto principle to find the code that brings the
most value to our consumers and focus on optimizing that part.

Encapsulating the downstream components settings from our clients allows us to evolve
without breaking the compatibility of our APls.

Iterating on date and time reguirements with product owners, using concrete examples
with as many comer cases as you can think of, makes implementing those requirements
much simpler.

Maoving computations to data allows us to design big data processing that otherwise
would be very slow or not even feasible.

It's essential to pick a library with a similar or the exact concurrency model as your appli-
cation. The scalability and performance of your software will benefit.

It is crucial to understand whether or not operations in our system are idempotent. The
more idempotent operations we have, the more resilient the system we can design.

It's often possible to tweak the consistency versus the availability of systems we use. So
it's crucial to understand the consequences of those decisions.

Designing the versioning strategy for a network APl from the start and documenting it
publicly and clearly can give customers confidence and help them make their own ver-
sioning decisions.

Sometimes it's wiser to develop a do-it-yourself (DIY) solution with only needed function-
ality than using a heavy library that provides a required functionality but also a lot of
other functions that we don't need.
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